If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-4r-1=0
a = 3; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·3·(-1)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{7}}{2*3}=\frac{4-2\sqrt{7}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{7}}{2*3}=\frac{4+2\sqrt{7}}{6} $
| 5=u/2-12 | | 5x+5=4x+22 | | 3r-7+9r=30 | | k2-4k+1=-5 | | -9=-6r | | 10x=-34 | | 8x+12=x+6 | | 5(4x-2)+x+2=-34 | | 6x-4=12x+11 | | -6n=-8 | | -1y+8=37y | | 3√a+4=4 | | 6=8m | | 6*(x+12)= | | 6⋅(x+12)= | | 5(-2x-4)-5x+5=-15 | | ^3√a+4=4 | | 7x+2=10x-10 | | 3(x+5)=11.85 | | 4(w+6)=-6w+4 | | x-2=6+1= | | -2m+m^2=0 | | 5/8y=25 | | 12x^2+84x-15=0 | | -7-7a=2(1+a) | | −21=n−8 | | 7x+13=23-3x | | 8^-x+2=16 | | 7x−19=-5 | | 14x-(25x-18)=34x-30)+18 | | 3v+4=180 | | 2x+33=13x |